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1. Phys. A Math. Gen. 27 (1994) 531S5323. Printed in Ihe UK 

Stability analysis of the discrete Landau-Ginsburg equation 

G Rowlands 
Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

Received I 1  April 1994 

Abstract. The stability of time-independent solutions of a class of discrete nonlinear equations is 
investigated by extending a method developed wl i e r  b study the stability of the static solutions 
of Ihe continuous Landau-Ginsburg equation. A simple necessary condition for stability is found 
and it is shown that all nonlinear wave solutions are unstable while soliton and kink solutions 
may be stable. A further method is introduced which shows that Ihe soliton solution is in fact 
unstable whilst the kink is marginally stable. 

1. Introduction 

In a recent paper the present author and others (Grundland, Infeld, Rowlands and Wintemitz 
1990 hereafter referred to as GIRW) canid-out a stability analysis of a class of solutions of 
the nonlinear Landau-Ginsburg equation. It was shown that a necessary condition for the 
stability of nonlinear wave solutions to long wavelength disturbances, was that a h p a  < 0 
here A. is the wavelength of the nonlinear wave and a is a measure of the amplitude of this 
wave. In particular, soliton and kink type solutions are stable. In this paper we extend this 
method of analysis to encompass the discrete analogue of the Landau-Ginsburg equation. 
We write this equation in the form 

(1.1) 

where we may consider M. to be the order parameter at the nth point of a onedimensional 
lattice. V ( M , )  is the local free energy at the same lattice point and the dot denotes 
differentiation with respect to the argument, whilst y is a measure of the damping in the 
system. Such equations arise naturally ihsolid state physics where the lattice is the atomic 
lattice. If we replace the left-hand side of the above equation and Write 

a M" 
( I / Y ) T  = ~ ( M , + I  + Mn-I - 2Mn) - V ( M A  

a2M" 
at2 a- = 2(Mn+1+ Mn-1 - 2Mn) - V ( M J  (1.2) 

we have an equation which describes molecular vibrations on an ordered chain such as a 
protein molecule (see for example Zhang 1990). 

The usual continuous Landau-Ginsburg equation can be obtained from equation (1.1) 
in the limit as the variation of M, with n is slow compared to the underlying lattice. Then 
we may write Mn = M ( n A )  = M ( t ) ,  where A is the lattice spacing, and Taylor series 
expand Mn*l = M ( n A  k A )  = M ( 5  i A )  to give the form discussed in GIRW 
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5314 G Rowlands 

In analogy with the treatment given in GlRW we first look for time-independent solutions 
of the above equations. In the continuous case one uses the powerful methods of phase 
plane analysis to show the existence, in general, of nonlinear spatially periodic solutions 
and, in particular, soliton and kink type solutions. Unfortunately such a method is not 
available to study the discrete form of equation. However, it is shown in section 2 that for 
particular forms for the potential V(M) nonlinear solutions exist in the discrete case and 
these include kinks and solitons. Equations with such potentials are called integrable. 

In the continuous case the stability analysis is based on the existence of a marginally 
stable mode. This existence arises directly from the spatial invariance of the governing 
equation (1.3). A perturbation method, appropriate to long wavelength disturbance, is then 
developed which gives in compact form a necessary condition for stability. The method 
was first used in plasma physics by Rowlands (1969) and then extensively developed by 
Infeld and Rowlands (1990). 

The discrete versions of the underlying equations lack spatial invariance and the method 
used in the continuous case cannot be used to show the existence of a marginal mode. 
However, in the discrete case the time-independent solutions are arbitrary up to a phase 
factor and the requirement of spatial invariance can be replaced by one of phase invariance. 
The existence of a marginal mode is then easily shown. The rest of the perturbation theory 
follows quite closely that in the continuous case and a necessary condition for stability 
found. The method is discussed in detail in section 3. 

2. Nonlinear time-independent (integrable) solutions 

For both equations (1.1) and (12), the time independent solutions satisfy 

an+, + Mn-l - 2Ga = i V ( 4 ) .  (2.1) 

Unfortunately equations of this general type are known to have chaotic solutions, that is 
fin varies chaotically with n. The best known example is where 

V ( M )  = ZK sin M 

in which case (2.1) is the discrete analogue of the simple pendulum, and is known as 
the standard map, and is ubiquitous in studies of Hamiltonian systems with two disparate 
frequencies (Chuikov 1979). 

In design studies of particle accelerators McMillan (1971) considered equations of the 
form (2.1) and in particular the form for V ( M )  which leads to bounded periodic and non- 
chaotic solutions. It is this type of solution we are interested in. Following McMillan we 
rewrite (2.1) in the form (G + x )  

Y.+l = x" &+I = -x + f ( x . )  (2.2) 

that is x,+l+x,-~ = f ( x . )  where f ( x )  = Zx+V(x)/2. Now we demand thatx,+l = g(xn), 
where g is some function not necessarily single valued. Then y,  = g- ' (xn)  and the condition 
for acceptable solutions is that f ( x )  is of the form 

f(x)  = g ( x )  + s- ' (x ) .  (2.3) 
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This is not an easy equation to solve but McMillan did obtain some solutions, of which one 
is discussed further below. Guided by the method of phaseplane analysis, as applied to the 
continuous case, we impose the condition that equation (22) has solutions of the form 

@"ti  - X.-dZ = U(%) (2.4) 

which is equivalent to demanding that 

or 

g ( x )  = ( f (4  T m) /2. 

McMiIlan obtained a solution to (2.3) by insisting that x ,  y satisfy the equation of the 
general conic section, the simplest non-trivial equation symmetic under the interchange of 
x and y ,  namely 

(2.6) 

where A, B ,  C, D and H are constants. This may be solved for y as a function x and 
compared to (2.5) to give 

Axzy2 + B(x2y + XY') + C(xZ + y z )  + Dxy = H 

f(x) = - X ( D  + B X ) / ( A X ~  + BX + c) (2.7) 

and 

x'(Bx + 0)' - 4(CxZ - H ) ( A x z  + BX + C )  
U ( x )  = 

(AxZ + Bx + C)z 

Thus we have shown the existence of a class of bounded periodic solutions of (2.1) 
corresponding to 

V(M) = 2 f ( M )  - 4M (2.9) 

with f ( M )  given by (2.7). Furthermore, such solutions also satisfy the equivalent of (2.4), 
namely 

- . L ) Z  = U(M") (2.10) 

where U(&) is given by (2.8). 
By analogy with phase-plane analysis for a continuous second-order differential 

equation, we see that if U ( M )  2 0 between two distinct values Ma and Mb then 
equation (2.10) corresponds to a closed curve in the discrete phase plane where h?,+1- Mni.-1 
is plotted as a function of A&. This curve corresponds to a solution of (2.1) of the form of 
a periodic or quasi-periodic variation of M. with n. The imposition of the condition that 
U ( M )  is zero at M. leads to a soliton solution whilst a kink corresponds to o ( M )  = 0 at 
M = M, and Mb. 

Quispel et a1 (1989) have discussed equations of the form 
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where f a ( x )  are products of two quadratic functions. They show that such maps satisfy an 
equation of the form (2.6) but with an added term E(x + y ) ,  where x 8 and y Mn+l. 
Importantly, the above equation can be written in the form of (2.10) with the value of U 
calculated from the above-mentioned extension of (2.6). Thus, as found by Quispel et al 
(1989), an equation of the above form can have solutions corresponding to closed curves 
in discrete phase plane and such solutions they call integrable. 

Unlike the continuous case it is not possible to proceed from (2.10) to obtain an explicit 
solution for Mn as a function of n. Rather we cheat, assume that the n variation of 
is that of an elliptic function and substitute into the basic equation (2.1). This procedure 
produces two distinct classes of solution in the form of nonlinear waves, one of which 
reduces to a soliton and the other to a kink in a suitable limit. 

With A = C = 1, B = 2 and D = 2q we have the basic equation 

&+I + M"-r + 2MAq + MJ(1 + Mn)2 = 0 

A& = a - b sn2(pn + s. k )  

(2.11) 

whose solution can be written in the form 

(2.12) 

where sn(x, k )  is the Jacobi elliptic function and the constants a, b and @ satisfy 

(a + l )k2  sn2(p. k )  = b 

(U + 1)'(1 - 2a cn2(@, k) dnZ(p, k )  - k2 sn4(p, k) ]  = 1 

and 

(a + 1)2[cn2(p,k)+dn2(B,k)+cnZ(p,k)dnZ(B,k)} = 2 - q .  

Here k is a parameter (0 5 k < I) which controls the amplitude and the wavelength of the 
nonlinear oscillations of M. as a function of n,  and s an arbitrary phase factor. For k = 1 
we have a soliton solution of the form 

f i - '  - smh2 p sech2(n@ + s) (2.13) 

with cosh(2p) = -4. 
For the above solutions the potential U has the form 

U ( M )  = 4[MZ(q + M)2 - (1 + M)2(M2 - H ) ] / ( l  + M ) 4 .  (2.14) 

H is a function of k with H = 0 corresponding to the soliton solution, that is k = 1. 
For A = -1, B = 0, C = 1 and D = -e the basic equation becomes 

Mn+, + M.-, - crMn/ ( l  -if;) = 0 (2.15) 

whose solution is 

fin = k sn(p, k )  sn(np + s, k )  (2.16) 

where the phase s is still arbitrary, @ is given by the condition 

cr =Zcn(p,k)dn(B,k) (2.17) 
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and 0 < k Q 1. For k = 1 we have the kink solution 
an = tanh p tanh(n0 + s) (2.1 8) 

where cz = 2 sech' ,9. For the above solutions the potential is given by 

U ( M )  = {oz.M2 + 4(1 - M z ) ( H  - M 2 ) ) / (  1 - M2)' (2.19) 
H = ( I  - a/2)' corresponds to the kink solution. 

Broomhead and Rowlands (1983) based a perturbation theory on this particular case to 
discuss the onset of chaos in the standard map referred to above. 

In summary we have shown that an equation such as (2.1), can have, by suitable choice 
of V ( M ) ,  bounded periodic solutions. Further, for two distinct choices, we have explicit 
solutions of an as a function of n.  All these solutions may be written in the form 

a,, = h ( n / T ( k )  + a ( k ) s ,  k )  (2.20) 

where h(x ,  k) is periodic in x with period T and the phase parameter s is arbitrary. The 
parameter k controls the amplitude and period of the nonlinear solution. Equations (2.12) 
and (2.16) furnish specific examples which are such as to reduce to a soliton and kink 
solution, respectively, in the limit as T -+ 03. It is sometimes convenient to express (2.20) 
as a Fourier series and write 

(2.21) 

It may be noted that though these solutions are continuous functions of s, if T(k)  = 2np/q, 
(where p and q are integers) then for any one value of s, A?" takes on only q distinct 
values. In a phase plane where an+, - an-! is plotted as a function of M,,, this would 
give q distinct points, whereas if T(k) /2n is irrational, one has a continuous curve as for 
the solution of a differential equation. 

The solutions discussed above have much in common with those of the Toda lattice 
equation (Toda 1981) which we write in the form 

(2.22) 

where *n = (exp(-br,) - 1). Time periodic solutions exist of the form 

where E ,  K are the elliptic integrals of argument k ,  and 

d = cn2(2K/A) + ( E / K )  sn2(2K/L) 
where U is a function of L which itself is arbitrary. Interestingly, if we define 

@ - de-b" " -  
then 

(@"+I - @ d ) 2  = U(@") (2.23) 

where 

U(@) = -@I(@ - cn2(2K/W(@ - d n ' ( 2 K / w 4  
and A = 16cn2(2K/h)dn2(2K/L). The above expression is of the form (2.10): a form 
which automatically means that the solutions lie on simple curves in the discrete analogue 
of a phase plane where @"+I - @"-I is plotted as a function of 4". In particular, chaotic 
behaviour is ruled out. 
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3. Linear stability analysis 

We write the solution of (1.1) or (1.2) in the form 

M.(I) = M,, + SMne-A' 

substitute into these equations and neglect products of SM, to give the linearized eigenvalue 
equation 

LSM, = -pSM, , .  (3.1) 

Here 

LSM. -6Mn+i + & M ~ - I  - 2 +  -(Mn)SMn (3.2) ( 4 -  ) 
and p = .\/y or a i 2 ,  respectively. 

Flcquet's theorem can be invoked. By analogy, we write SM, = $,,e'" and take 
periodic with the same period as 4. This gives 

In the continuous case, where L is replaced by a second-order differential equation, 
to be 

L A  = - ~ h  + (1 - exp( iWnt l  + (1 - exp(iO)@n-l (3.3) 

which we solve by treating I as small and expanding in powers of 1. Thus we write 

@" = qp + i q p  + P*p +. . . 

/.L = 0 + rp,  + P/L* + ... 
and 

and substitute into (3.3) to give 

L @  = 0 

L $ A ~ )  = - ~ , ~ G ; I o )  - i - +:,) 
(3.4) 

(3.5) 

plus higher order equations. 
In the continuous case the solution of (3.4) was obtained by invoking the spatial 

invariance of (1.3) and was simply the spatial derivative of M. Here we invoke the 
arbitrariness of the solution fin with respect to the phase factors and obtain the result 
that the solution of (3.4) is 

@Ao) = a,%/as. (3.7) 

This is readily seen to be correct by differentiating equation (2.1) with respect to s. Thus 
the phase invariance implies the existence of a marginally stable mode just as the spatial 
invariance implied the existence of a similar mode in the continuous case. 
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The rest of the analysis follows very closely that for the continuous case. Thus we 
multiply (3.5) by @Ao) and sum over n from 0 to N - 1 where N comesponds to the period 
of h, that is @"+N = @". (Note that N depends on k.) Using the result that 

where we have used the periodicity of both @Ao) and @:I), shows that the operator L is 
self-adjoint, in which case we obtain the consistency condition 

By changing the suffices and using the periodicity it is readily shown that the right-hand 
side of the above equation is identically zero. Thus p1 0. By direct substitution it may 
then be shown that the particular integral of (3.5) is given by 

= -in-M,,. a -  
as 

To obtain the complete solution we must add the homogeneous solutions in such a way 
to make @A1) periodic. One homogeneous solution is given by (3.7) while the second is 
aMn/ak where k is the parameter which labels the various static solutions. Using the form 
for Mn given by (2.21) we add to the above form for $A1) sufficient amount of the second 
homogeneous solution to remove the secular behaviour associated with the factor n. This 
gives a periodic solution for @A1) of the form 

where 0, = (n/T(k) t sa(k))Zn, or in the form 

(3.9) 

To next order in the expansion in 1, the consistency condition gives an equation for pz, 
namely, 
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This expression must be independent of the phase so we integrate both sides with respect to 
s from 0 to l / a .  First consider the left-hand side of (3.10). Using the expansion as given 
by (2.21) allows us to write 

where 

I,,,,! = I '"dss in [ ( ;+as )~m]s in [ ( ;  +as)2zI] 

= ' 1  ,/U ds {cos((;+as)Zn(m-I)) - c o s ( ( - + + s ) ~ ~ ( ~ + ~ ) ) }  n 
2 T 
1 

2a 
- _  - m 0. I > 0 

so that 

Similarly 

m Ila ds -- = 2z2a  A i m 2  cos(21rmjT). Jd as as m=1 

To calculate the remaining conhibution we first note that by change of suffix in the second 
summation 

aMN-I a& a& ah?,, 
as as as as 

=+----- 

which is zero because of the periodicity of (UN = MO). We now use the expression (3.9) 
for $,$I) and because of the above result we see that the second term in this expression will 
not contribute to the following integral and we can write 

-iT2 dAm = -2zN -A,msin 
dk dT/dk m=l  
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This eventually gives an equation for p2 in the form 

If we define 
m 

G = Aim sin(2nmlT) 
,=I 

and 

we can write 
aG/ak(T2/12) 

2rr(dT/dk) ' 
LLz = - 

It is readily shown that G ,  as defined by (3.11), may be written in the form 

5321 

(3.11) 

(3.12) 

(3.13) 

It should be pointed out that this expression for pz has been obtained using only the fact 
that Ma satisfies (2.1) and can be written in the form (2.21). It has not been necessary to 
use an explicit form for the solution such as (2.12) or (2.16). 

Using the result given by (2.10) and changing the integration with respect to s by one 
with respect to M gives 

where are the two roots of U(M) = 0 defining a region where U(M) > 0. This 
expression is analogous to that for the quantity G as defined by equation (2.19) of GIRW 
but the k dependence of U(M) is not as simple as in the continuous case and so no simple 
expression for aG/ak is available. However, it is obviously positive and for the two 
examples given in section 2 we see that as we increase k from zero to 1, so that the solution 
goes from small amplitude waves to a kink or a soliton, the value of G increases. That 
is aG/ak is positive. Then, in complete analogy with the continuous case discussed in 
GIRW, the sign of the quantity p depends simply on that of dT/dk. Again this is positive 
in the cases under discussion so we may conclude that pz c 0. This means that, as for 
the continuous case, the nonlinear wave solutions described by (1.1) are unstable and by 
analogy with the continuous case the growth rates go to zero as k -+ 1, that is, the kink or 
soliton solution. 

If we apply the result to equation (1.2) it is seen that the nonlinear wave solutions are 
stable to the long wavelength disturbances considered here and equation (3.13) is now an 
expression for the frequency of oscillation. 

In a second paper, Infeld er a1 (1991) showed that in the continuous case the soliton 
solution of the Landau-Ginsburg equation was unstable to a class of perturbations (not 
included in the class considered in GIRW or above), namely where SM, is proportional 
to Q + bM: with Q and b depending on p and with p taking negative values. The kink 
was found to be stable. It is not been possible to find analytically the analogous class 
of perturbations for the discrete equations discussed in the present paper. However, by 
extending a well known result in the theory of linear second-order differential equations to 
difference equations it is possible to show that the discrete soliton solution is unstable but 
the discrete kink is stable. The details are given in the appendix. 
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4. Choice of potential 

In most applications of the Landau-Ginsburg equation the actual form of the potential 
function of V ( M )  as a function of M is either very complicated or not known in closed 
form. It is then usually approximated by a simple polynomial in M which takes account of 
any symmetry requirement on V ( M ) .  Thus (2.15) would be approximated by 

(if",, + 4-, - 2if") - LYifn(l + if;) = 0. (4.1) 

The solution of this equation should be compared to that of (2.15). For small values of ifn 
the phaseplane contours are quite similar and show the existence of periodic nonlinear 
waves. However, for contours which approach the sepratrices there is a fundamental 
difference. Solutions of (4.1) show the breakup of closed contours and the advent of 
chaotic trajectories while solutions of (2.14) retain their simplicity right up to the kink 
solution which originates with the seprahices. 

Thus if it is thought that any physical quantity corresponding to the quantity fin in 
equation (2.1) cannot be a chaotic function of n then this requirement places stringent 
conditions on the form of V ( M ) ,  namely the form implicit in equation (2.15) but not that 
in equation (4.1). Since chaotic behaviour is always more apparent near sepratrices, which 
physically correspond to soliton or kink behaviour, and such solutions are usually the more 
stable (as shown in section 3 in the discrete case and in GNW for the continuous case) and 
hence more likely to exist in nature, it is the naturally occurring solutions which will be 
chaotic. I 

In solid-state physics and in biological studies of large protein molecules, for example, 
where the presence of an underlying lattice is very basic, the question of whether measurable 
quantities can be chaotic is of a fundamental nature. If such solutions are allowed then the 
nature of the potential V ( M )  is not too critical but the continuous approximation cannot be 
made as it loses the very nature of the solution. On the other hand if chaotic solutions are 
not acceptable then the potential V(M) must be of a special nature leading to an integrable 
solution. Passing to the continuous limit in this case causes no problems. 

If one is to demand that the underlying discrete equations must be integrable at least in 
the time-independent case then it may be best to base the theory on an equation of the form 
of (2.10) rather than (2.1) as this ensures integrability with little restriction on the form of 
U(M). In the continuous case the equation analogous to (2.10) and the one analogous to 
(2.1) are simply related by differentiation and with U(M) = V ( M )  + H where H is some 
constant. Unfortunately this is not true in the discrete case and the relationship in general 
is not known. 

5. Conclusions 

It has been shown that for a class of potentials, time-independent solutions of the discrete 
Landau-Ginsburg equation exist which are non-chaotic. However all such solutions are 
unstable with the exception of that of the form of a discrete kink. This behaviour is 
analogous to that found earlier for the case of the continuous Landau-Ginsburg equation. 

The method of stability analysis as discussed in section 3 is based on the existence of 
the solution given by (3.7). Thus the method should be extendable to more complicated sets 
of equations as in the analogous method in the continuous case (see for example Bridges 
and Rowlands 19941. 
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Appendix 

We write the discrete eigenvalue equation (3.1) in the form 

and consider another possible solution 6 f i n  corresponding to an eigenvalue F. so that 

We multiply (A.l) by S M n ,  (A.2) by 6M,, subtract and sum over n from - N  to m to give 

6Mn+1 + 6Mn-I + g J M n  = 

6M"+, +&if"_, + g J M n  = -F.6M*. 

(A.]) 

(A.2) 

(A.3) 
We now choose N such that the second bracketed term is zero. For perturbations to kink 
and soliton type solutions this corresponds to N = CO, while for nonlinear waves we choose 

Suppose now that 6M. is positive for - N  < n < m but 6M,,,+l c 0 while 6& remains 
positive at least for - N  < n < m + 1, then first, the left-hand side of (A.3) is negative, 
and second, the summation on the right-hand side is positive. Under these circumstances 
we must have 

P > b. (A.4) 
This condition may be interpreted by saying that the eigenfunction with the least number 
of zeros, in this case 

Now in the context of the present paper we have shown there always exists an 
eigenfunction proportional to aMn/as  with eigenvalue p = 0. For a soliton solution, 
apart from the zeros at infinity which are not relevant as they are accounted for by the 
choice of N, a M n / a s  has one zero and hence by the above result there exists an eigenvalue 
C& with an eigenvalue F. < 0. This corresponds to an instability and hence the soliton 
solution is linearly unstable. For the kink solution, the eigenfunction a M J a s  corresponding 
to p = 0 is always of one sign and hence no eigenfunction with a lower value of p exists. 
Thus the kink mode is marginally stable. 

The above method also shows that an unstable eigenfunction exists in the case of 
nonlinear waves confirming the stability analysis given in section 3. 

The analysis leading to the result (A.4) is a straightforward extension of that used in 
the continuous case to prove a similar result (see for example Morse and Feshbach 1953, 
section 6.3). 

~ M - N  = SM-N = 0. 

has the smallest value of p. 
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